
1Copyright 2006 by Pearson Education

Building Java ProgramsBuilding Java Programs

Chapter 8:
Classes and Objects

2Copyright 2006 by Pearson Education

Lecture outline

� anatomy of a class, continued

� constructors

� encapsulation

� preconditions, postconditions, and invariants

3Copyright 2006 by Pearson Education

Object initialization: Object initialization:

constructorsconstructors

reading: 8.4

4Copyright 2006 by Pearson Education

Initializing objects
� It is tedious to construct an object and assign values to
all of its data fields one by one.

Point p = new Point();

p.x = 3;

p.y = 8; // tedious

� We'd rather pass the fields' initial values as parameters:

Point p = new Point(3, 8); // better!

� We were able to this with Java's built-in Point class.

5Copyright 2006 by Pearson Education

Constructors

� constructor: Initializes the state of new objects.

� Constructor syntax:

public <type> (<parameter(s)>) {

<statement(s)> ;

}

� A constructor runs when the client uses the new keyword.

� A constructor does not specify a return type;

it implicitly returns the new object being created.

� If a class has no constructor, Java gives it a default constructor

with no parameters that sets all the object's fields to 0.

6Copyright 2006 by Pearson Education

Point class, version 3
public class Point {

int x;
int y;

// Constructs a Point at the given x/y coordinates.
public Point(int initialX, int initialY) {

x = initialX;
y = initialY;

}

public void translate(int dx, int dy) {
x += dx;
y += dy;

}
}

7Copyright 2006 by Pearson Education

Tracing constructor calls
� What happens when the following call is made?

Point p1 = new Point(7, 2);

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public void translate(int dx, int dy) {
x += dx;
y += dy;

}

yx

p1

8Copyright 2006 by Pearson Education

Client code, version 3
public class PointMain3 {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point(5, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

// move p2 and then print it again
p2.translate(2, 4);
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

}
}

OUTPUT:
p1 is (5, 2)
p2 is (4, 3)
p2 is (6, 7)

9Copyright 2006 by Pearson Education

Client code question
� Recall our client program that produces this output:

p1 is (7, 2)
p1's distance from origin = 7.280109889280518

p2 is (4, 3)

p2's distance from origin = 5.0

p1 is (18, 8)
p2 is (5, 10)

distance from p1 to p2 = 13.0

� Modify the program to use our new constructor.

10Copyright 2006 by Pearson Education

Client code answer
// This client program uses the Point class.
public class PointMain {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point(7, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

// compute/print each point's distance from the ori gin
System.out.println("p1's distance from origin = " + p1.distanceFromOrigin());

System.out.println("p2's distance from origin = " + p1.distanceFromOrigin());

// move p1 and p2 and print them again
p1.translate(11, 6);
p2.translate(1, 7);
System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");
System.out.println("p2 is (" + p2.x + ", " + p2.y + ")");

// compute/print distance from p1 to p2
System.out.println("distance from p1 to p2 = " + p1. distance(p2));

}
}

11Copyright 2006 by Pearson Education

EncapsulationEncapsulation

reading: 8.5

12Copyright 2006 by Pearson Education

Encapsulation
� encapsulation:
Hiding implementation details of an object from clients.

� Encapsulation provides abstraction;
we can use objects without knowing how they work.

The object has:

� an external view (its behavior)

� an internal view (the state that accomplishes the behavior)

13Copyright 2006 by Pearson Education

Implementing encapsulation
� Fields can be declared private to indicate that no code
outside their own class can access or change them.

� Declaring a private field, general syntax:

private <type> <name> ;

� Examples:

private int x;

private String name;

� Once fields are private, client code cannot access them:

PointMain.java:11: x has private access in Point

System.out.println("p1 is (" + p1.x + ", " + p1.y + ")");

^

14Copyright 2006 by Pearson Education

Accessing encapsulated state
� We can provide methods to examine their values:

public int getX() {
return x;

}

� This gives clients read-only access to the object's fields.

� If so desired, we can also provide methods to change it:

public void setX(int newX) {
x = newX;

}

� Client code will look more like this:
System.out.println("p1 is (" + p1.getX() + ", " + p1.getY() + ")");

p1.setX(14);

15Copyright 2006 by Pearson Education

Accessors and mutators
Two common categories of instance methods used with
encapsulated objects:

� accessor: Provides information about an object.

� The information comes from (or is computed using) the fields.

� Examples: distanceFromOrigin , distance , getX

� mutator: Modifies an object's state.
� Sometimes the change is based on parameters (e.g. dx , dy).

� Examples: translate , setLocation , setY

16Copyright 2006 by Pearson Education

Benefits of encapsulation
� Provides abstraction between an object and its clients.

� Protects an object from unwanted access by clients.

� Example: If we write a program to manage users' bank
accounts, we don't want a malicious client program to be able
to arbitrarily change a BankAccount object's balance.

� Allows you to change the class implementation later.
� Example: The Point class could be rewritten

to use polar coordinates (a radius r and an angle
θ from the origin), but the external behavior
and methods could remain the same.

17Copyright 2006 by Pearson Education

Point class, version 4
// A Point object represents an (x, y) location.
public class Point {

private int x;
private int y;

public Point(int initialX, int initialY) {
x = initialX;
y = initialY;

}

public double distanceFromOrigin() {
return Math.sqrt(x * x + y * y);

}

public int getX() {
return x;

}

public int getY() {
return y;

}

public void setLocation(int newX, int newY) {
x = newX;
y = newY;

}

public void translate(int dx, int dy) {
x += dx;
y += dy;

}
}

18Copyright 2006 by Pearson Education

Client code, version 4
public class PointMain4 {

public static void main(String[] args) {
// create two Point objects
Point p1 = new Point(5, 2);
Point p2 = new Point(4, 3);

// print each point
System.out.println("p1 is (" + p1.getX() + ", " + p1.getY() + ")");
System.out.println("p2 is (" + p2.getX() + ", " + p2.getY() + ")");

// move p2 and then print it again
p2.translate(2, 4);
System.out.println("p2 is (" + p2.getX() + ", " + p2.getY() + ")");

}
}

OUTPUT:
p1 is (5, 2)
p2 is (4, 3)
p2 is (6, 7)

19Copyright 2006 by Pearson Education

Preconditions, Preconditions,

postconditions, and postconditions, and

invariantsinvariants

reading: 8.6

20Copyright 2006 by Pearson Education

Pre/postconditions
� precondition:
Something assumed to be true when a method is called.

� postcondition:
Something promised to be true when a method exits.

� Pre/postconditions are often documented as comments.

� Example:

// Sets this Point's location to be the given (x, y).
// Precondition: newX >= 0 && newY >= 0
// Postcondition: x >= 0 && y >= 0
public void setLocation(int newX, int newY) {

x = newX;
y = newY;

}

21Copyright 2006 by Pearson Education

Class invariants
� class invariant: An assertion about an object's state
that is true throughout the lifetime of the object.

Examples:

� "No BankAccount object's balance can be negative."

� "The speed of a SpaceShip object must be ≤ 10."

� Let's add an invariant to the Point class:

� "No Point object's x and y coordinates can be negative."

To enforce this invariant, we must prevent clients from:

� constructing a Point object with a negative x or y value

� moving a Point object to a negative (x, y) location

22Copyright 2006 by Pearson Education

Violated preconditions
� What if your precondition is not met?

� Sometimes the client passes an invalid value to your method.

� Example:

Point pt = new Point(5, 17);
Scanner console = new Scanner(System.in);
System.out.print("Type the coordinates: ");
int x = console.nextInt(); // what if the user types
int y = console.nextInt(); // a negative number?
pt.setLocation(x, y);

� How can we prevent the client from misusing our object?

23Copyright 2006 by Pearson Education

Dealing with violations
Ways to deal with violated preconditions:

� Return out of the method if negative values are found.

Drawbacks:

� It is not possible to do this in the constructor.

� The client doesn't expect this behavior.

� Fails "silently"; client doesn't realize something has gone wrong.

� Have the object throw an exception. (better)

� This will cause the client program to halt.

24Copyright 2006 by Pearson Education

Throwing exceptions
� Throwing an exception, general syntax:

throw new <exception type> ();

or throw new <exception type> (" <message>");

� <message> will be shown on console when program crashes.

� Example:

// Sets this Point's location to be the given (x, y).
// Throws an exception if newX or newY is negative.
// Postcondition: x >= 0 && y >= 0
public void setLocation(int newX, int newY) {

if (newX < 0 || newY < 0) {
throw new IllegalArgumentException();

}

x = newX;
y = newY;

}

25Copyright 2006 by Pearson Education

Encapsulation and invariants

� Ensure that no Point is constructed with negative x or y:

public Point(int initialX, int initialY) {
if (initialX < 0 || initialY < 0) {

throw new IllegalArgumentException();
}

x = initialX;
y = initialY;

}

� Ensure that no Point can be moved to a negative x or y:

public void translate(int dx, int dy) {
if (x + dx < 0 || y + dy < 0) {

throw new IllegalArgumentException();
}

x += dx;
y += dy;

}

